首页> 外文OA文献 >Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D
【2h】

Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D

机译:基于概率的动态时间扭曲和视觉和深度词语用于RGB-D中的人体手势识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic\udTime Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach.
机译:我们提出一种方法来解决视频和深度图像序列中的人类手势分割和识别问题。引入了“视觉袋和深度词”(BoVDW)模型,作为“视觉袋”(BoVW)模型的扩展。对最新的RGB和深度特征(包括新提出的深度描述符)进行分析并以后期融合形式进行组合。该方法与一种新颖的基于概率的动态\ udTime翘曲(PDTW)算法集成到了“手势识别”管道中,该算法用于执行空闲手势的先前分段。提出的DTW变体使用相同手势类别的样本来构建该手势类别的高斯混合模型驱动的概率模型。与标准BoVW模型和DTW方法相比,公共数据集中整个“手势识别”管道的结果显示出更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号